您当前的位置:首页 > 市场分析

诺奖解读引力波探测史从爱因斯坦到LIGO

2018-04-18 13:22:12

2017年10月?3日,美国物理学家雷纳·韦斯、基普·索恩和巴里·巴里什,因构思和设计激光干涉仪引力波天文台?LIGO,对直接探测引力波做出杰出贡献,荣获2017年诺贝尔物理学奖。?

2017年诺贝尔物理学奖得主:雷纳·韦斯、基普·索恩和巴里·巴里什

雷纳·韦斯是美国理论物理学家、麻省理工学院物理学荣誉教授。在他的学术生涯中,最重要的成绩是发展出激光干涉术来探测引力波。这项技术是激光干涉引力波天文台装置的基础。韦斯教授首次分析了探测器的主要噪声来源,并领导了LIGO仪器科学的研究,终究使LIGO到达了足够的灵敏度,在人类历史上第1次探测到了引力波。

?

基普·索恩是美国理论物理学家,2009年之前1直担负加州理工学院费曼理论物理学教授。他奠定了引力波探测的理论基础,首创了引力波波形计算和数据分析的研究方向,并对LIGO仪器科学做出了重要贡献,特别是提出了量子计量学理论的1系列基本概念。值得1提的是,索恩教授在2009年辞去费曼教授职务后,开始寻求写作和电影事业。他的第1部电影就是和诺兰合作的《星际穿越》,索恩教授担负该片的科学顾问。索恩教授曾屡次为《科学美国人》撰文,在《黑洞专刊》中,就有索恩等人撰写的《把黑洞看成1张膜》。

索恩和《星际穿越》导演诺兰

巴里·巴里什是美国实验物理学家,加州理工学院物理系林德教授。巴里什教授于1997年至2006年担负?LIGO?项目主管,领导了LIGO建设及早期运行,建立了LIGO国际科学合作,把LIGO从几个研究小组从事的小科学成功地转化成了触及众多成员并且依赖大范围装备的大科学,终究使引力波探测成为可能。巴里什曾在1973年8月刊的《科学美国人》中撰文,介绍中微子实验的展开情况。

除3位获奖的科学家,还有1个名字不应被遗忘。英国物理学家罗纳德·德雷弗教授于索恩、韦斯等人1同创建了LIGO项目,但他于今年3月不幸谢世,享年85岁。

LIGO于2015年9月14日首次直接探测到双黑洞合并产生的引力波,证实了爱因斯坦100年前所做的预测,弥补了广义相对论实验验证中最后1块缺失的拼图。迄今为止,LIGO已确认了4个引力波信号。在《引力波探测史:从爱因斯坦到LIGO》1文中,法国科学家达米尔?·?布斯库里克和路易克?·?维兰为我们详细讲述了人类探测引力波的漫长历史。

引力波探测史:从爱因斯坦到LIGO

撰文?达米尔?·?布斯库里克,路易克?·?维兰

翻译徐寒易

乐器发出的声音满载着信息。凝听音乐时,我们可以推论出演奏音乐的乐器的种类和质地,我们乃至可以评价乐手技艺的高深程度。所有这些信息的载体是声波,这是1种以固定速率向外传播的空气扰动。物理学家也借用这个概念来研究宇宙。只不过,在宇宙中传导波的介质其实不是空气,而是时空;而这类波不再是声波,而是引力波。

实际上,广义相对论提出的1个基本假定是,把空间的3个维度和时间维度统1在1起的时空是具有弹性的。就算其中空无1物,时空也可产生振动,而这类振动就是引力波。这类波与乐器发出的声波1样,也满载着信息。这些信息1方面反应了制造出引力波的事件,而另外一方面也体现了引力波传播时通过的时空的性质。物理学家希望,在未来的几年里,美国的激光干涉引力波天文台和意大利VIRGO探测器能取得来自宇宙的、证明引力波存在的直接证据。

爱因斯坦在1916年提出了引力波的概念。起初,引力波曾遭到了物理学家的质疑。从理论的角度看,引力波的存在仰仗的是时空与其他物理实体之间的奥妙差异。另外,通过实验探测引力波是极其困难的。

现在,再没人怀疑引力波的存在了。引力波是广义相对论的预言产物,而广义相对论在20世纪已被无数的观测和实验所证实。另外,1些天文观测为引力波的存在提供了间接证据。物理学家乃至算出了引力波的1些特点值,比如传播速度。引力波在真空中的传播速度等于光速,与广义相对论的预测1致。

引力的速度

引力以有限的速度传播,这个性质其实不是不言而喻的。这个观点最初由皮埃尔-西蒙?拉普拉斯于1773年提出,与当时的主流理论——牛顿的万有引力理论是相悖的。在牛顿的理论框架内,不管相隔多远,两个有质量的物体间的引力作用是立即产生的。而牛顿的理论相当做功,例如,它可以准确地解释行星运动的开普勒定律。

拉普拉斯希望借用自己的新理论来解释1个奇特的天文现象——朔望月的缩短。我们现在知道,这个现象是由于地球自转受潮汐力的影响变慢而酿成的。而在当时,为了解释这个现象,拉普拉斯构造了1个与牛顿体系不同的理论模型。在拉普拉斯的理论中,引力反应的是物体发射出的粒子的作用,这些粒子的速度是有限的。拉普拉斯将他的理论预测与观测进行对比,他发现所谓的“粒子”的速度应当最少是光速的700万倍。这个速度如此之大,实际上跟牛顿的理论没有太大的差别。

100年后,苏格兰人詹姆斯?克拉克?麦克斯韦提出了电磁学理论,而美国物理学家阿尔伯特?迈克尔逊和爱德华?莫雷则通过实验证明光速守恒。这些发现间接地促使研究者重新斟酌引力的速度问题。为了解释光速守恒,昂利?庞加莱发明了所谓的“新力学”,它的方程与爱因斯坦的狭义相对论类似,但其物理学意义则不同。但是,不论是在庞加莱还是爱因斯坦的理论框架下,没有任何作用力的传播速度能超过光速,而这是与牛顿引力理论抵牾的。

庞加莱于1905年提出了1个新理论,他认为引力作用的传播速度也等于光速,相当于1种“引力波”。但是,他的理论却有不可挽回的缺点。其中最致命的1点在于,没法根据这个基本假定得出1个1般性的引力定律。另外,这个理论还违背了作用力-反作用力定律。而且这类“引力波”需要从波源汲取能量,但它本身却不能像声波或电磁波那样携带能量。

爱因斯坦建立了普遍适用且与观测数据符合的引力理论。他在1915年发表了广义相对论方程,该方程将相对性原理扩大到对所有观测者有效。广义相对论为引力现象提供了1种与相对性原理符合的描写。这1伟大成绩的核心思想完全颠覆了人们对时间和空间的认识。

最开始颠覆这些“常识”的是狭义相对论,特别明显地体现了这1点的是德国物理学家赫尔曼?闵可夫斯基在1907年根据狭义相对论得出的几何表达式。闵可夫斯基证明,就算两个观测者丈量两个事件的时间间隔和距离时得到的结果不同,但对分割两个事件的某种“时空距离”,他们得出的结果总是1致。这意味着,独立于观测者的物理现实不是单独的时间或空间,而是时空,1个能将时间和空间统1起来的4维几何结构。

爱因斯坦的广义相对论则更进了1步,指出时空不是绝对的,即时空的几何其实不像狭义相对论那样是既定的。爱因斯坦提出,时空的几何是由其中所含的能量决定的,而引力恰恰就是时空的曲折几何的体现——而不是1种“力”。

图片来源:

我们通经常使用1个图示来讲明这个道理:空间是1片由于中央大质量天体而畸变的曲面,大质量天体旁边有1个较小的天体。在这幅图示中,较小的天体其实不受力,它受惯性安排笔挺向前运动。但由于空间是曲折的,小天体的运行轨迹也是曲折的,结果就是绕着大质量天体旋转。这类图示在某种意义上是毛病的,但却道明了1个事实:在现代物理中,时空不再只是1个供物理事件上演的被动场地,它成了1种与其他物体联系在1起的柔软连续体。

时空的波动

为了简化讨论,我们先把时间放在1边。我们可以把空间视为某种可以扭曲、振动的弹性介质,因此它可以传播波。自1916年起,爱因斯坦就开始尝试证明他的广义相对论方程包括1个解,这个解能够表征引力波的传播。但是,广义相对论的数学之美与其方程的复杂性不分伯仲。这些方程的1个特点就是它们是非线性的。所谓的非线性,指的是1个系统产生的反应与它所受的刺激其实不成正比。

正如面对这类问题时研究者常做的那样,爱因斯坦决定先斟酌简化后的情况。他把引力波视为对初始的“平坦”时空的微调——即摄动。如预感的1样,他计算出了几种不同类型的引力场振动,而它们均以光速传播。但是他很快就开始怀疑,这些解在物理上是不是真实存在。

1个疑点与引力波的两重性质有关:引力波既是几何学的,是空间的波动;也是物理学的,是引力场的特点。因此,作为1种自然界中存在的波,引力波的振幅应当能够和1些物理量联系在1起,比如速度、辐射功率等等。在爱因斯坦解出的6种引力波里,只有两种既能传递能量又以光速传播。这些波也是横波,犹如电磁波1样,也就是说它们只在与传播方向垂直的平面上振动。与此相反,声波是纵波,会在传播的方向上紧缩空气。

而爱因斯坦得到的其他4个偏振解其实不传输能量,传播速度也是随机的。实际上这是个在当时未能被理解的数学问题,问题出在了坐标系的选择上。

事实上,相对性原理规定,物理量的值其实不随坐标系的选取而产生变化。爱因斯坦选择的坐标系其实不完善,用它算出的偏振模式在广义相对论的框架下不是真实存在的。但是,现在研究其他引力理论的物理学家发现,这些偏振解中的某几个具有物理意义。如果能观测到这些偏振模式的话,将有划时期的意义,这能让我们测试超出广义相对论的物理理论。

使人揣摩不透的坐标系性质,加上方程的非线性,不但让触及广义相对论的物理问题计算起来极其困难,还让结果难以理解。这就是物理学家在20世纪60年代之前都未能理解黑洞视界的缘由。1936年左右,爱因斯坦也1度相信自己和纳森?罗森证明了引力波其实不存在。而这个结论与爱因斯坦先前的工作是完全矛盾的。

引力波输送的能量和它与物资系统的相互作用,这些问题看似容易,但实际上非常复杂,以致于物理学家1直在研究这些问题,经过了几10年才能得出初步结论。

探测引力波

但是在寻觅引力波方面,英国物理学家菲利克斯?皮拉尼于1955年取得了关键性的突破。他证明,可以通过丈量最少两个测试质量之间的距离变化来探测引力波。事实上,虽然用孤立的物体没法探测到引力波,但还是可以通过丈量两个测试质量之间空间的紧缩和膨胀来发现它的踪影。美国马里兰大学的约瑟夫?韦伯受此启发,开始进行实验直接探测引力波。虽然他用自己在20世纪60年代设计的“韦伯棒”甚么也没有探测到,但是他的这1发明启发了许多物理学家。用棒状探测器来探测引力波的概念后来被广为接受并加以改进。

引力辐射原则上是可以探测到的。那末如何进行定量丈量呢?想要设计探测器的话,首先得肯定引力波源辐射功率的量级、引力波经过时致使的空间长度变化的量级和信号频率的量级。根据爱因斯坦最初的研究,科学家可以估算出人体在摆手时发出的引力波功率量级是10–50?瓦特,这和大多数恒星系统发出的引力波功率差不多。这些值已得到了更精确的计算方法的证实,引力波仿佛成了1种没法观测的思想玩物。

随着天文学家在1962年发现了类星体,并在1967年发现了脉冲星,探测引力波的希望被再次点燃。这些天体属于中子星或黑洞。它们非常致密,在描写其引力性质时必须斟酌广义相对论。物理学家已证明,如果1个致密天体高速运动,并且这类运动是联贯的且不太对称的话,这个天体就可以成为良好的引力波源。

图片来源:

虽然没法通过望远镜观测,但1个双星系统中的两个黑洞并合是能量最高的天体物理现象之1。两个具有太阳质量的黑洞并合发出的引力波功率量级大概是1046瓦特,这已可以媲美太阳发光的功率。

但是,所有的大功率引力波源和我们的距离都10分遥远,在地球上进行的探测实验只能搜集到非常微弱的信号。在这类信号的作用下,测试质量间距的相对变化最高也只有10–20,相当于太阳和地球之间的距离改变了1个原子的直径。

对脉冲双星PSRB1913+16的研究间接地证明了引力波的存在。美国人约瑟夫?泰勒和拉塞尔?赫尔斯于1974年发现了PSRB1913+16。这个双星系统公转周期的逐渐减少与能量的消失有关,而消失的能量转化成了引力波。这个效应其实类似于拉普拉斯为了解释月球在轨道上的加速而提出的理论。法国物理学家蒂博?达穆尔和娜塔莉?德鲁艾尔等人的计算证明,广义相对论和脉冲双星观测结果是1致的。

以后就是直接探测引力波了,这就是位于意大利比萨南部的VIRGO探测器和分别位于美国两个地点的激光干涉引力波天文台承当的重担。这些仪器能够探测出相当于原子直径比上太阳系直径的距离相对变化。在21世纪初的首阶段运行中,这些探测器未能探测到引力波,但是尔后研究者对它们的灵敏度进行了1次大升级。先进LIGO已投入运行。VIRGO探测器的高级版本也将在2016年投入使用。

这些探测器利用的是干涉丈量方法。测试质量是悬挂于探测器的两个相互垂直的长臂末真个反射镜。探测器两臂内穿梭着大功率的激光束。两臂长度的微弱变化会影响两束激光相遇处的光强。

两个反射镜相距越远,由引力波酿成的臂长变化量就会越大,也更“容易”被观测到。法意合建的VIRGO探测器的臂长达3千米。红外激光器发出的激光束被半透明反光镜1分为2。每束激光会进入1个长达3千米的光腔,然后照耀到反射镜上,接着反射镜会把激光反射回分光镜那里。在返回分光镜前,激光在光腔中已被来回反射了许屡次。这屡次来回会显著增加探测器的等效臂长。由于光的波动性,分光镜上两束激光相互叠加产生干涉。实验开始前,科学家调剂仪器,让两束激光产生相消干涉——1束光的波峰正对应另外一束光的波谷,反之亦然。通过这类方式两个光波相互抵消

诺奖解读引力波探测史从爱因斯坦到LIGO

,而传感器不会记录下任何信号。

当引力波经过时,每束激光的光程会产生微小的变化。这将会改变两束激光波峰和波谷的相对位置,因此二者的叠加其实不会产生相消干涉,而传感器则会记录下1个信号。研究人员可据此推导出臂长的变化并肯定是不是曾有引力波经过。经过升级改造的干涉仪可探测的最小臂长变化量的量级是10–20米,差不多是质子大小的10万分之1。但是,除引力波之外有许多其他因素会影响反射镜之间的距离。物理学家正在尝试从“噪音”中分离出由引力波引发的信号。

测试质量上的反射镜在被运送到VIRGO台址之前,首先会在测试工作台上接受分析。研究人员特别关注镜片表面,它必须毫无瑕疵。

VIRGO与LIGO

干涉仪工作时既相互独立,又齐心协力。科学家希望综合多个干涉仪的信息,利用3角丈量法来肯定引力波源在天空中的具体位置。3角丈量法的原理就好比用双耳来听声音。用单耳听是没法肯定声源位置的。声音到达两只耳朵的时间存在前后差异,通过这个时间延迟就能够推算出声源的方位。与此类似,1台干涉仪接收到的引力波信号可以来自任何地方,在地球表面最少需要3台相互分离的引力波探测器才能肯定波源的位置。

VIRGO与LIGO的两台探测器合作,组成了这类引力波探测,并从2007年开始运行。两个团队的研究者分享这些探测器的数据,并对其进行整合分析。这类数据同享还有1种好处:如果真的出现了引力波信号,那末所有探测器都应当探测到它,所以数据分享是个确认信号的好方法。

图片来源:

对引力波源进行实时定位还能让在各个电磁波段工作的天文望远镜和卫星也同时指向波源,观测与引力波相干的天文现象。

2007年到2011年间,VIRGO和LIGO搜索了能够让臂长变化10–22米的引力波。但这还远远不够。探测器的灵敏度会对最大可探测距离造成直接影响。这个距离取决于波源的种类、特点、引力波的振幅、延续时间和频率范围。打个比方,以VIRGO的灵敏度要探测到两个1.4倍太阳质量的中子星碰撞时发出的引力波,这两个中子星到地球的距离要在4000万光年之内。而由脉冲星发出的引力波信号在几万光年外就没法被探测到了。

知道了最大的丈量距离后,还要斟酌到引力波源的出现频率。1些引力波源非常罕见,比如相互碰撞的中子星要比单个的中子星少很多。如果能够提高引力波探测器的灵敏度,那末探测到引力波的可能性也会上升。换句话说,环绕地球的可探测宇宙范围将被扩大。

从2011年底起,VIRGO经历了1些重大改造,变成了“先进VIRGO”,将于2016年开始运行。“先进VIRGO”的反射镜变得更重,激光器的功率扩大了10倍,光学设置进行了调剂,分析程序也得到了优化。到2020年,先进VIRGO能够探测的距离将是VIRGO的10倍,而它能探测的宇宙范围将扩大1000倍。我们希望利用它在每一年探测到更多的中子星碰撞。与此同时,LIGO也进行了升级改造,而且日本和印度也在建造新的引力波探测器,中国也在准备引力波探测计划。

在遥远的未来,人类还有更加雄心勃勃的引力波探测计划,如建造在地下的臂长为30千米的爱因斯坦望远镜,或是位于太空的,臂长为500万千米的演变空间激光干涉天线,我们对来自宇宙的天籁将变得更加熟稔。

本站内容大部分来源于络,仅供参考,如有侵权请联系删除谢谢!

哪里有卖搅拌车
深圳新能源汽车厂家
花椒苗
旺旺麻将代理
推荐阅读
图文聚焦